

Initial Study of An Effective Fast-time Simulation Platform for Unmanned Aircraft System Traffic Management

Min Xue and Joseph Rios

NASA Ames Research Center Moffett Field, CA

AIAA Aviation Forum, 5-9 June 2017

Motivation

Objective: Initial study and justification of developing an effective fast-time simulation platform

- Overview of existing simulations
- Requirements of UTM simulations
- Experiments using UTM simulations
- Summary

Simulation Categories

- Operations (multiple aircraft)
 - Manned aircraft: CTAS, FACET, ACES
 - Small UAV: Jenie^[JGCD2016], Cook^[AIAA2016]
- Encounter (~two aircraft)
 - MIT Lincoln Lab
 - Mueller^[MST2016]

- Vehicle centric (single aircraft)
 - Reflection^[NASA-TP2006]
 - Others

Comparison

Simulation	UTM required			
Maximum number of vehicles per scenario	>100			
Fidelity of vehicle models	>medium			
Vehicle's controller modeled?	1			
Wind effect	Along-track + cross-track + vertical			
Limited flight duration?	×			
Capability of Monte Carlo simulations?	✓			
Collision avoidance algorithm included?	✓			

- Overview of existing simulations
- Requirements of UTM simulations
 - Small UAV Trajectory model
 - Monte Carlo method
- Experiments using UTM simulations
- Summary

Small UAV Trajectory Model

Dynamics:

$$\begin{bmatrix} \dot{p}_{n} \\ \ddot{p}_{n} \\ \dot{p}_{e} \\ \ddot{p}_{e} \\ \ddot{h} \\ \ddot{\theta} \\ \ddot{\psi} \end{bmatrix} = \begin{bmatrix} \ddot{p}_{n} + (\omega_{n}) \\ -(\cos\phi\sin\theta\cos\psi + \sin\phi\sin\psi)F_{z}/m \\ \ddot{p}_{e} + (\omega_{e}) \\ (-\cos\phi\sin\theta\sin\psi + \sin\phi\cos\psi)F_{z}/m \\ g - \cos\phi\cos\theta F_{z}/m \\ M_{\phi}/J_{x} \\ M_{\theta}/J_{y} \\ M_{\psi}/J_{z} \end{bmatrix}$$

Controller: [proportional-derivative (PD)]

$$\begin{bmatrix} \ddot{p}_{e} \\ \ddot{p}_{n} \end{bmatrix} = \begin{bmatrix} k_{p}(p_{e,d} - p_{e}) + k_{d}(\dot{p}_{e,d} - \dot{p}_{e}) \\ k_{p}(p_{n,d} - p_{n}) + k_{d}(\dot{p}_{n,d} - \dot{p}_{n}) \end{bmatrix}
\begin{bmatrix} \phi_{d} \\ \theta_{d} \end{bmatrix} = \frac{m}{F_{z}} \begin{bmatrix} -\sin\psi & -\cos\psi \\ \cos\psi & -\sin\psi \end{bmatrix}^{-1} \begin{bmatrix} \ddot{p}_{e} \\ \ddot{p}_{n} \end{bmatrix}
\begin{bmatrix} M_{\phi} \\ M_{\theta} \end{bmatrix} = \begin{bmatrix} k_{p,\phi}(\phi_{d} - \phi) + k_{d,\phi}(\dot{\phi}_{d} - \dot{\phi}) \\ k_{p,\theta}(\theta_{d} - \theta) + k_{d,\theta}(\dot{\theta}_{d} - \dot{\theta}) \end{bmatrix} l
k_{p,\phi} = 4.5, k_{d,\phi} = 0.5, k_{p,\theta} = 4.5, k_{d,\theta} = 0.5, k_{p} = 7.5, k_{d} = 4.2$$

7

Impact of Wind Speed

Impact of Desired Vehicle Ground Speed

- Overview of existing simulations
- Requirements of UTM simulations
 - Small UAV Trajectory model
 - Monte Carlo method
- Experiments using UTM simulations
- Summary

Monte Carlo Method

- UTM requires parameter and uncertainty/error studies
- UTM uncertainties/errors are high-dimensional
- Monte Carlo method is independent of the problem dimension
- The rate of convergence of order is : $O(1/\sqrt{n})$
- Error percentage can be computed by:

$$E = \frac{100z_c S_x}{\bar{x}\sqrt{n}}$$

Monte Carlo is widely used in finance and engineering

- Overview of existing simulations
- Requirements of UTM simulations
- Experiments using UTM simulations
- Summary

Scenario

- Six quadrotors with V_g= 5 m/s
- A rectangular north wind field with uncertainty

Setup

Experiment #1: Impact of Wind

Wind s (m/	•	Avoidance	Loss of separation (probability)			Extra flight distance (m)			Extra flight time (s)		
mean	Std.	maneuver	mean	Std.	Error(%)	mean	Std.	Error(%)	mean	Std.	Error(%)
0	0	Right turn	0	0	0	165.5	0.0	0.0	31.0	0.0	0.0
3	1	Right turn	0	0	0.0	(168.8	, 3.6	0.12	31.0	0.03	0.01
5	2	Right turn	0.01	0.08	97.2	212.1	42.9	1.7	32.4	1.8	0.46

$$E = \frac{100z_c S_x}{\bar{x}\sqrt{n}}$$

Experiment #2: Impact of Avoidance Maneuver

Wind s (m/	-	Avoidance	Loss of separation (probability)			Extra flight distance (m)			Extra flight time (s)		
mean	Std.	maneuver	mean	Std.	Error(%)	mean	Std.	Error(%)	mean	Std.	Error(%)
3	1	Right turn	0	0	0	168.8	3.6	0.17	31.0	0.03	0.01
3	1	Left turn	0.847	0.36	3.46	71.0	23.3	2.7	9.5	3.4	3.0
3	1	Hover	0.04	0.20	38.9	5.95	4.1	5.6	20.9	4.4	1.72

Summary

- Reviewed some existing simulations
- Identified UTM required attributes
- Conducted trajectory sensitivity analysis
- Conducted preliminary experiments using Monte Carlo

Future Work

- Implement the platform on the Cloud
- Incorporate and generalize more vehicle dynamic and control systems
- Implement and generalize more collision avoidance algorithms
- Implement onboard sensor and communication device models
- Environmental data (wind, temperature, etc.)
- Geographic Information System (GIS) data (terrain, population, etc)